This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

GOLD(III)-CYCLAM COMPLEXES. X-RAY CRYSTAL STRUCTURE AND A USEFUL MACROCYCLIC EFFECT ON THE REDUCTION OF GOLD(III)

Eiichi Kimura^a; Yasuhisa Kurogi^a; Tohru Koike^a; Mitsuhiko Shionoya^a; Yoichi Iitaka^b ^a Department of Medicinal Chemistry, School of Medicine, Hiroshima University, Hiroshima, Japan ^b Department of Biological Sciences, Nishi Tokyo University, Yamanashi, Japan

To cite this Article Kimura, Eiichi , Kurogi, Yasuhisa , Koike, Tohru , Shionoya, Mitsuhiko and Iitaka, Yoichi(1993) 'GOLD(III)-CYCLAM COMPLEXES. X-RAY CRYSTAL STRUCTURE AND A USEFUL MACROCYCLIC EFFECT ON THE REDUCTION OF GOLD(III)', Journal of Coordination Chemistry, 28: 1, 33 – 49

To link to this Article: DOI: 10.1080/00958979308035142 URL: http://dx.doi.org/10.1080/00958979308035142

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

GOLD(III)-CYCLAM COMPLEXES. X-RAY CRYSTAL STRUCTURE AND A USEFUL MACROCYCLIC EFFECT ON THE REDUCTION OF GOLD(III)

EIICHI KIMURA,* YASUHISA KUROGI, TOHRU KOIKE, MITSUHIKO SHIONOYA

Department of Medicinal Chemistry, School of Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734, Japan

and YOICHI IITAKA

Department of Biological Sciences, Nishi Tokyo University, Uenohara, Kitasugun, Yamanashi 409-01, Japan

(Received March 23, 1992; in final form May 8, 1992)

The X-ray crystal structure of the Au^{III}-cyclam complex 1 shows a four-coordinate square-planar N₄ geometry with the *trans* III conformation (or *RRSS* configuration) of cyclam and an average Au^{III}-N bond distance of 2.04 Å. A block-diagonal-matrix least-squares refinement yielded a final *R* value of 0.069 for 2463 independent reflections. Crystals of $1 \cdot (NO_3)_{1.5} (ClO_4)_{1.5} \cdot H_2O$ ($C_{10}H_{26}N_{5.5}O_{11.5}AuCl_{1.5}$) are triclinic, space group *P*1 with a = 15.148(8), b = 8.668(5), c = 8.267(5) Å, $\alpha = 109.17(6)$, $\beta = 101.08(5)$, $\gamma = 82.08(4)$ Å, V = 1003(1) Å³, $d_{calcd} = 2.177$ g cm⁻³, and Z = 2. The reduction potential for Au^{III} in 1 to Au⁰ varies with pH: -0.16 V vs SCE (pH 1.0) to -0.55 V (pH 9.0) at I = 0.50 (NaClO₄) and 25°C, according to the degree of cyclam NH deprotonation. The macrocyclic gold (III) complex 1 has been found to possess very useful electrochemical properties for a novel gold-plating agent. The new properties of gold (III)-cyclam complexes have been characterized by the tetrafluorinated cyclam 7, tetramethylcyclam 8, and aminocyclam 9. Dissociation of two protons from the macrocyclic NH amines in 7 readily occurs with extremely low pK₄ values of 1.6 and 6.5 at 25°C and I = 0.10 (NaClO₄). Cyclic and de polarograms of 8 in DMF (25°C, I = 0.10; Et₄NClO₄) show the Au^{III,II} quasi-reversible reduction wave at $E_{1/2} = +0.18$ V vs SCE.

Keywords: Gold(III)-cyclam complexes, X-ray structure, gold-plating

INTRODUCTION

Recently, we synthesized the first saturated macrocyclic polyamine complexes of gold, the Au(III)-1,4,8,11-tetraazacyclotetradecane (cyclam) complex 1 and its homologues, by which the characteristic acidity of d^8 Au^{III} ion is well demonstrated (*e.g.*, $1 \rightleftharpoons 2$, see equation (1)).¹ It was found that the saturated macrocyclic tetraamines with their unique acid-base properties were the first useful chelating agents to be

^{*} Author for correspondence.

selective for Au^{III} over Cu^{II}, Fe^{III}, Co^{II} and Pd^{II} ions. A four-coordinate square-planar cyclam structure for 1 has been assigned mainly on the basis of ¹H and ¹³C NMR data.

We now have succeeded in obtaining a good single crystal of 1 with mixed counteranions $(NO_3)_{1.5}(ClO_4)_{1.5}$, and have undertaken its X-ray structure analysis. We also have investigated the electrochemistry of 1 and its relevant Au^{III} complexes 3 and 4 at various pH values.¹ Coordination with macrocyclic polyamine ligands is known to dramatically affect the redox properties of transition-metal ions: *e.g.*, otherwise unstable Ni^{1,2} Ni^{III,3} Ag^{II,4} or Ag^{III,5} are greatly stabilized. The novel electrochemical behaviour of Au^{III}-cyclam 1 has been disclosed in comparison to homologous linear polyamine complexes 5⁶ and 6.⁷ In 1 and its derivatives 3 and 4, Au^{III} is more stabilized (with respect to Au⁰) by the "macrocyclic effect" than in the linear homologue complexes 5 and 6. The special Au(III) reduction properties would make 1 an excellent and pollution-free gold-plating agent.

In addition, in order to further explore properties of Au(III), we have synthesized new Au(III) macrocyclic polyamine complexes 7, 8 and 9 with tetrafluorinated cyclam (6,6,13,13-tetrafluoro-1,4,8,11-tetraazacyclotetradecane),⁸ tetramethylcyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane),⁹ and aminocyclam (6amino-1,4,8,11-tetraazacyclotetradecane),¹⁰ respectively. Significantly lowered pK_a values of NH for 7, a new Au(III/II) redox couple with 8 in DMF, and a rare zwitterionic form for 9 at neutral pH have been disclosed.

EXPERIMENTAL

Materials

All materials were of analytical reagent grade and were used without further purification. HEPES (*N*-(2-hydroxyethyl)piperazine-*N*'-3-propanesulfonic acid) was purchased from DOJINDO Lab. and used without further purification. Tetrafluorinated cyclam (6,6,13,13-tetrafluoro-1,4,8,11-tetraazacyclotetradecane),⁸ tetramethyl cyclam (1,4,8,11-tetraazacyclotetradecane),¹⁰ **3**·(ClO₄)₃·HClO₄,¹ **4**·(ClO₄)₂·HClO₄,¹ Au^{III}(dien)Cl₃ **5**·Cl₂,⁶ and Au^{III}(en)₂Cl₃ **6**·Cl₃⁷ ("dien" and "en" are 1,5-diamino-3-azapentane and 1,2-diaminoethane, respectively) were synthesized by the reported methods.

Preparation of Au^{III} Cyclam Complexes

Au^{III} -cyclam(1).

The procedure in the synthesis of Au^{III}-1,4,8,11-tetraazacyclotetradecane (Au^{III}-cyclam) as $Cl \cdot (ClO_4)_2$ salts reported earlier¹ was improved. Cyclam (200 mg, 1.0 mmol) and NaAuCl₄·2H₂O (398 mg, 1.0 mmol) in 190 cm³ of CH₃CN and 10 cm³ of EtOH were heated at reflux for 1 h. After cooling the solution to room temperature, 10 cm³ of aqueous 0.1 M HCl solution was added and then insoluble materials (Au⁰ etc.) were filtered off. After concentrating the filtrate, the residue was purified by Dowex 50X4 cation exchange column chromatography (eluant: aqueous 3 M HCl). The obtained solid was recrystallized from 1 M aqueous HClO₄ solution as yellow needles of Au^{III}-cyclam·Cl·(ClO₄)₂ in 60% yield.

A single crystal suitable for X-ray analysis was obtained by recrystallization of Au^{III}-cyclam-Cl·(ClO₄)₂ (100 mg) from aqueous 1 M HNO₃ solution. Colourless prisms of Au^{III}-cyclam as (ClO₄)_{1.5}(NO₃)_{1.5} salts were obtained in 50% yield. Anal.

Calcd. for $C_{10}H_{24}N_4Au(ClO_4)_{1.5}(NO_3)_{1.5} \cdot H_2O$: C, 18.27; H, 3.99; N, 11.72%. Found: C, 18.58; H, 4.13; N, 12.05%. ¹H NMR (1 M DCl/D₂O): δ 1.9–2.0 (2H, m, CCH₂C), 2.41–2.57 (2H, m, CCH₂C), 3.1–3.2 (8H, m, NCH₂C), 3.2–3.4 (8H, m, NCH₂C). IR (KBr pellet): 3403 (s), 3170 (s), 1385 (vs), 1163 (m), 1121 (m), 1096 (s), 1059 (vs), 1032 (s), 889 (m), 826 (s), 627 (m) cm⁻¹.

Au¹¹¹-tetrafluorinated cyclam (7)

Tetrafluorinated cyclam (6,6,13,13-tetrafluoro-1,4,8,11-tetraazacyclotetradecane; 68 mg, 0.25 mmol) and NaAuCl₄·2H₂O (100 mg, 0.25 mmol) in 50 cm³ of CH₃CN were stirred for 1 h, and insoluble materials (Au⁰ etc.) were filtered off. After concentration of the filtrate, recrystallization from 1 M aqueous HClO₄ solution afforded yellow needles of the Au^{III} complex as its Cl·(ClO₄)₂·H₂O salt in 23% yield. Anal. Calcd. for C₁₀H₂₂N₄F₄Au·Cl·(ClO₄)₂·H₂O: C, 16.67; H, 3.08; N, 7.77%. Found: C, 16.54; H, 3.22; N, 7.78%. ¹H NMR (1 M DCl/D₂O): δ 3.2–3.4 (8H, m, NCH₂C), 3.5–3.7 (8H, m, NCH₂C). IR (KBr pellet): 3461 (s), 3357 (s), 2986 (s), 2820 (s), 1447 (m), 1406 (m), 1343 (s), 1321 (m), 1144 (vs), 1123 (vs), 1090 (vs), 1055 (vs), 1011 (s), 947 (m), 891 (s), 818 (m), 627 (s) cm⁻¹.

Au^{III}-tetramethylcyclam(8)

Tetramethylcyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane; 256 mg, 1.0 mmol) and NaAuCl₄·2H₂O (400 mg, 1.0 mmol) in 50 cm³ of CH₃CN and 10 cm³ of CH₃OH were stirred for 2 h at room temperature, and insoluble materials were filtered off. After concentration of the filtrate, recrystallization from 1 M aqueous HClO₄ solution afforded yellow needles of the Au^{III} complex as its Cl·(ClO₄)₂ salt in 23% yield. Anal. Calcd. for C₁₄H₃₂N₄Au·Cl·(ClO₄)₂: C, 24.45; H, 4.69; N, 8.14%. Found: C, 24.39; H, 4.68; N, 7.96%. ¹H NMR (1 M DCl/D₂O): δ 2.5–2.9 (4H, m, CCH₂C), 3.25 (12H, s, CH₃), 3.6–3.9 (8H, m, NCH₂C), 4.1–4.4 (8H, m, NCH₂C). IR (KBr pellet): 3424 (m), 3005 (m), 2787 (m), 1471 (m), 1096 (vs), 1032 (m), 1005 (m), 951 (m), 845 (m), 790 (m), 750 (m), 625 (s), cm⁻¹.

Au^{III} -aminocyclam (9)

Aminocyclam (6-amino-1,4,8,11-tetraazacyclotetradecane; 224 mg, 1.0 mmol) and NaAuCl₄·2H₂O (400 mg, 1.0 mmol) in 20 cm³ of CH₃CN were heated at reflux for 1 h, after which 10 cm³ of 0.1 M HCl aqueous solution was added, and insoluble materials (Au⁰, etc.) were filtered off. After concentration of the filtrate, the residue was purified by Dowex 50X4 ion exchange column chromatography (eluant: 3 M HCl), and recrystallization from 1 M HClO₄ aqueous solution afforded colorless needles of the Au^{III} complex as its 4ClO₄ salt in 20% yield. Anal. Calcd. for $C_{10}H_{26}N_5Au \cdot (ClO_4)_4$: C, 14.81; H, 3.23; N, 8.63. Found: C, 14.67; H, 3.48; N, 8.47. ¹H NMR (1 M DCl/D₂O): δ 1.8–2.0 (2H, m, CCH₂C), 3.0–3.3 (16H, m, NCH₂C), 3.39 (1H, br, H₂NCH). IR (KBr pellet): 3414 (s), 2832 (s), 1449 (m), 1144 (vs), 1117 (vs), 1008 (vs), 885 (m), 627 (s), cm⁻¹.

Potentiometric Titration

pH Titrations were carried out at $25.0 \pm 0.1^{\circ}$ C and I = 0.10 (NaClO₄). All solutions were deaerated in a stream of pure argon gas (>99.999%). The preparation of the test solutions and the calibration of the electrode system (Orior 811 pH meter) have

been described earlier.¹¹ The calculation method for the deprotonation constants is the same as determined earlier.¹¹

Spectrophotometry

¹H NMR (400 MHz) spectra were recorded on a JEOL GX-400 spectrometer, and 3-(trimethylsilyl)-propionic-2,2,3,3- d_4 acid (sodium salt) was used as internal reference. IR and electronic spectra were recorded on a Shimadzu FTIR-4200 and a Hitachi U-3200 spectrophotometer, respectively. Atomic absorption spectra were measured on a Shimadzu AA-646 spectrophotometer, where NaCl for the supporting electrolyte and HCl buffer were used instead of the potentially explosive NaClO₄ and HClO₄.

X-ray Structure Determination

An approximately equidimensional crystal of $1 \cdot (\text{ClO}_4)_{1.5} (\text{NO}_3)_{1.5} \cdot \text{H}_2\text{O}$ with diameter 0.13 mm was used for data collection. The lattice parameters and intensity data were measured on a Philips PW1100 diffractometer with graphite monochromated Mo K α radiation at room temperature. Crystal data and data collection parameters are given in Table I. The structure was solved by the heavy-atom method and refined anisotropically by block-diagonal-matrix least-squares methods to the final *R* value of 0.069. All the hydrogen atoms could not be located in a difference electron density map. The molecular structure is illustrated in Figure 1 by ORTEP drawings with 30% probability thermal ellipsoids. A perspective view of two molecules of Au^{III}-cyclam 1, counter anions and two water molecules in the unit cell with the observed strong hydrogen bonds (<3 Å) is shown in Figure 2. Atomic positional parameters are given together with their equivalent isotropic temperature

Summary of crystanographic paramet	$\frac{1}{1.5}(103)_{1.5}(103)_{1.5}(120)_{1.5}(100)_{1.5}$
formula formula weight crystal system space group cryst colour cell dimens a, b, c, Å c, B, c, den	$C_{10}H_{26}N_{5.5}O_{11.5}Cl_{1.5}Au$ 657.5 triclinic P1 colorless 15.148(8), 8.668(5), 8.267(5) 109.16(6), 101.08(5), 82.08(4)
$\alpha, \beta, \gamma, \deg$ V, A^3 Z $d_{calcd}, g cm^{-3}$ cryst diameter, mm radiation μ, cm^{-1}	1003(1) 2 2.177 0.13 Μο Κα 75.9
$2\theta_{\max}$, deg refinement no. of measd reflcns no. of used reflcns ($ F_0 > 3\sigma(F_0)$) R R_W	44 block-diagonal-matrix least-squares 4938 2463 0.069 0.079

TABLE I ummary of crystallographic parameters for $1 \cdot (ClO_4)$, (NO_3) , $s \cdot H_2O_3$

FIGURE 1 ORTEP drawings of two molecules of 1 in the unit cell; (a) Au(1)-cyclam, (b) Au(2)-cyclam. The counter anions and two water molecules are omitted for clarity. Atoms are drawn with 30% probability ellipsoids.

FIGURE 2 A perspective view of two molecules of 1, counter anions and two water molecules in the unit cell. The strong hydrogen bonds (<3Å) are shown as dotted lines.

TABLE II Fractional coordinates $(\times 10^4)$ and equivalent isotropic temperature factors $(Å^2)$ for $1 \cdot (ClO_4)_{1.5} (NO_3)_{1.5} \cdot H_2O$

Au(1) 2572 b_{qq}^{-2} Au(1) 25721(0) 7477.1(0) 7073.9(0) 2.07(0.02) N(3) 1699.2(2) 8765.0(6) 5720.5(5) 5.11 C(4) 1193.1(4) 7418.4(8) 2074.5(51) 5.11(0.02) N(3) 1699.2(2) 8765.0(6) 5720.5(5) 5.(1) C(4) 1193.1(4) 7418.4(8) 4225.5(8) 6.(1) N(6) 2428.1(4) 5566.3(7) 4971.5(7) 7.11 C(7) 3249.0(5) 4420.0(9) 4469.0(9) 7.(1) C(8) 3643.3(3) 3677.3(4) 5960.3(5) 3.(1) C(10) 348.3(4) 6166.7(7) 8816.4(7) 7.(1) C(11) 3895.3(2) 7388.6(4) 1035.6(8) 5.(1) N(13) 2737.2(4) 9447.5(7) 9386.0(7) 7.(1) C(12) 305.4(7) 1085.16(8) 6.(1) N(13) 2737.2(4) 946.2(7) 2043.7(7) 7.(1) C(12) 9021.4(4) 1095.	Atom	w/a	/1	_ / _	
Au (1)2572.1 (0)7477.1 (0)7073.9 (0)2.07 (0.02)Au (2)7655.8 (25)2518.1 (38)2074.5 (51)2.11 (0.02)N(3)1699.2 (2)8765.0 (6)570.5 (5)5 (11)C (4)1193.1 (4)7418.4 (8)4225.5 (8)6 (1)N (6)2428.1 (4)5586.3 (7)4971.5 (7)7 (1)C (7)3249.0 (5)4420.0 (9)4469.0 (9)7 (1)C (8)3643.3 (3)3677.3 (4)9960.3 (5)3 (1)C (9)4156.4 (3)5115.7 (6)7659.0 (6)4 (1)N (10)3481.3 (4)6166.7 (7)8519.4 (7)7 (1)C (11)3879.3 (2)7388.6 (4)1036.5 (4)2 (1)C (12)3266.3 (3)8717.9 (7)1085.1 (8)5 (1)N (13)2737.2 (4)9447.5 (7)938.6 (07)7 (1)C (14)1927.4 (3)1056.6 (7)934.2 (6)4 (1)N (13)2737.2 (4)1065.6 (7)793.4 (6)6 (1)N (17)6284.0 (4)1986.2 (7)203.3 (7)7 (1)C (15)1476.2 (4)11075.2 (6)633.9 (6)7 (1)C (18)6150.1 (5)310.3 (9)789.6 (9)7 (1)C (19)6620.5 (5)130.5 (9)-804.0 (9)7 (1)C (11)0164.4 (651.3 (9)114.4 (10)7 (2)C (12)8016.4 (4)651.3 (9)114.4 (10)7 (2)C (21)8016.4 (4)651.3 (9)37 (1)10 (1)C (22)9021.4 (4)1075.2 (6)	Atom	x/a	y/b	<i>Z/C</i>	Beg
$\begin{array}{ccccc} Au(2) & 255.8(2) & 278.1(3b) & 2074.3(51) & 2.01(002) \\ Au(3) & 1699.2(2) & 8765.0(6) & 5720.5(5) & 5(1) \\ C(4) & 1193.1(4) & 7418.4(8) & 4225.5(8) & 6(11) \\ C(5) & 1951.6(4) & 6320.9(8) & 3508.1(8) & 6(11) \\ C(7) & 3249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(7) & 3249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(7) & 3249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(8) & 3643.3(3) & 3677.3(4) & 5960.3(5) & 3(1) \\ C(9) & 4155.4(3) & 5115.7(6) & 7659.0(6) & 4(1) \\ N(10) & 3481.3(4) & 6166.7(7) & 8519.4(7) & 7(1) \\ C(11) & 3893.9(2) & 7788.6(4) & 10136.5(4) & 2(1) \\ C(12) & 3266.3(3) & 8717.9(7) & 10851.5(8) & 5(1) \\ N(13) & 2737.2(4) & 9447.5(7) & 9386.0(7) & 7(1) \\ C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6901.6(8) & 6(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6901.6(8) & 6(1) \\ C(16) & 1067.0(4) & 5986.2(7) & 2043.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ N(20) & 7574.0(4) & 626.2(7) & 354.(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ N(20) & 7574.0(4) & 626.2(7) & 354.(7) & 7(1) \\ C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 6633.6(6) & 5(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 6633.6(6) & 5(1) \\ C(24) & 8985.1(4) & 4602.5(9) & 5171.(9) & 6(1) \\ C(25) & 8985.1(4) & 4602.5(9) & 5171.(9) & 6(1) \\ C(26) & 6785.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7991.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 6005.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5078.3(5) & 310.0 \\ O(32) & 326.6(5) & 6740.9(8) & 7259.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 739.4(10) & 17(3) \\ O(34) & 1209.3(5) & 4513.8(11) & 7364.3(4) & 300.0 \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 8(1) \\ O(44) & 4310.0(5) & 9513.8(11) & 7364.3(1) & 360.6(1) \\ O(45) & 6125.7(4) & 8825.4(9) & 173.9(10) & 10(1) \\ O(34) & 620.6(3) & -759.9(1) & 713.3 & 3364.6(5) & -11.0 \\ O(44) & 1303.4(2) & 1380.2(6) & -77.9(9) & 10(1) \\ O(55) & 8962.3(4) & -753.1(7) & 48$	$\Delta n(1)$	2572 1(0)	7477 1(0)	7073 9(0)	2.07(0.02)
$\begin{array}{ccccc} N(3) & 1699.2(z), & 2765.0(6), & 5720.5(5), & 211(602), \\ C(4) & 1193.1(4) & 7418.4(8), & 4225.5(8), & 6(1), \\ C(5) & 1951.6(4), & 6320.9(8), & 3508.1(8), & 6(11), \\ N(6) & 2428.1(4), & 5586.3(7), & 4971.5(7), & 7(1), \\ C(7) & 3249.0(5), & 4420.0(9), & 4469.0(9), & 7(1), \\ C(8) & 3643.3(3), & 3677.3(4), & 5960.3(5), & 3(1), \\ C(9) & 4156.4(3), & 5115.7(6), & 7659.0(6), & 4(1), \\ N(10) & 3481.3(4), & 6166.7(7), & 8519.4(7), & 7(1), \\ C(11) & 3359.3(2), & 7388.6(4), & 10136.5(4), & 2(1), \\ C(12) & 3266.3(3), & 8717.9(7), & 0385.6(4), & 10136.5(4), & 2(1), \\ C(13) & 1273.2(4), & 9447.5(7), & 9384.0(6), & 6(1), \\ C(14) & 1927.4(3), & 10586.9(7), & 9384.2(6), & 4(1), \\ C(15) & 1476.2(4), & 1075.2(6), & 8349.6(9), & 6(1), \\ C(16) & 1067.0(4), & 9933.7(8), & 6901.6(8), & 6(1), \\ N(17) & 6284.0(4), & 1986.2(7), & 2043.7(7), & 7(1), \\ C(18) & 6150.1(5), & 310.3(9), & -804.0(9), & 7(1), \\ C(19) & 6620.5(5), & 130.5(9), & -804.0(9), & 7(1), \\ C(12) & 8016.4(4), & 651.3(9), & -1408.2(10), & 7(2), \\ C(22) & 9021.4(4), & 1057.7(8), & -593.3(8), & 6(11), \\ C(23) & 9224.2(4), & 2762.2(6), & 663.6(6), & 5(1), \\ N(24) & 8093.1(3), & 2966.1(4), & 2313.9(4), & 4(1), \\ C(25) & 8985.1(4), & 4682.5(9), & 3507.1(9), & 6(1), \\ C(26) & 8535.0(4), & 4900.0(9), & 511.4(10), & 7(2), \\ N(27) & 7591.9(4), & 4492.5(7), & 5364.3(9), & 7(1), \\ C(28) & 7085.3(5), & 4190.0(9), & 548.0(9), & 7(1), \\ C(28) & 7085.3(5), & 4190.0(9), & 3509.4(10), & 7(3), \\ O(33) & 429.5(5), & 6740.9(8), & 7329.3(10), & 16(2), \\ O(33) & 120.3(8), & 6419.3(9), & 7309.4(10), & 7(3), \\ O(34) & 120.3(8), & 6419.3(9), & 7309.4(10), & 7(3), \\ O(33) & 429.5(5), & 6740.9(8), & 7329.3(7), & 7(1), \\ C(36) & 4379.0(1), & 9024.3(1), & 5744.9, & 9(2), \\ O(43) & 626.5(5), & 6740.9(8), & 7329.3(10), & 16(2), \\ O(33) & 429.5(5), & 6740.9(8), & 7329.3(10), & 16(2), \\ O(33) & 429.5(5), & 6740.9(8), & 7329.3(10), & 16(2), \\ O(33) & 429.5(5), & 6740.9(8), & 7329.3(10), & 16(2), \\ O(44) & 1620.7(2), & 5930.0(8), & 9329.9(7), & 9(1), \\ O(53) & 3426.7(3), & 3808.4(4), & -733.7(5$	Au(2)	7565 8(25)	2518 1 (38)	2074 5(51)	2.07(0.02) 2.11(0.02)
$\begin{array}{ccccc} C(4) & 1193.1(4) & 7418.4(8) & 4225.5(8) & 6(1) \\ C(5) & 1951.6(4) & 6320.9(8) & 3508.1(8) & 6(1) \\ C(7) & 2249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(7) & 3249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(8) & 3643.3(3) & 3677.3(4) & 5960.3(5) & 3(1) \\ C(9) & 4156.4(3) & 5115.7(6) & 7659.0(6) & 4(1) \\ C(11) & 3383.9(4) & 6166.7(7) & 8519.4(7) & 7(1) \\ C(11) & 3389.3(2) & 7388.6(4) & 10136.5(4) & 2(1) \\ C(12) & 3265.3(3) & 8717.9(7) & 10851.5(8) & 5(1) \\ N(13) & 2737.2(4) & 9447.5(7) & 9336.0(7) & 7(1) \\ C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6901.6(8) & 6(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6901.6(8) & 6(1) \\ C(16) & 1067.0(4) & 626.2(7) & 2033.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ N(20) & 7574.0(4) & 626.2(7) & 354.(7) & 7(1) \\ C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8855.1(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7959.19.(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 6058.0(5) & 2128.0(9) & 3775.9(9) & 7(1) \\ C(29) & 6077.3(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(29) & 6077.3(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(29) & 6077.3(3) & 3872.6(5) & 9329.9(7) & 9(1) \\ C(30) & 6058.0(5) & 2128.0(9) & 3775.9(9) & 7(1) \\ C(33) & 129.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 129.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 129.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 129.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(44) & 120.0(5) & 9513.8(11) & 7346.8(9) & 9(2) \\ O(44) & 1300.6(5) & 9513.8(11) & 7346.3(9) & 7(1) \\ C(33) & 4935.9(4) & 7591.0(7) & 5519.1(7) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 734.2(1) & 360.0(6) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(44) & 1303.4(2) & 3593.0(3) & 3366.1(4) & 4(1) \\ O(44) & 1303.4(2) & 3593.0(3) & 3366.1(4) & 442.1(1) \\ O(44) & 1303.4(2) & 3573.6(6) & -777.$	N(3)	1699 2(2)	8765 0(6)	5720 5(5)	5(1)
$\begin{array}{c} C(3) & 1951.6(4) & 6320.9(8) & 3508.1(8) & 6(1) \\ N(6) & 2428.1(4) & 5586.3(7) & 4971.5(7) & 7(1) \\ C(7) & 3249.0(5) & 4420.0(9) & 4469.0(9) & 7(1) \\ C(8) & 3643.3(3) & 3677.3(4) & 5960.3(5) & 3(1) \\ N(10) & 3481.3(4) & 6166.7(7) & 8519.4(7) & 7(1) \\ C(11) & 3859.3(2) & 7388.6(4) & 10136.5(4) & 2(1) \\ C(12) & 3266.3(3) & 8717.9(7) & 10851.5(8) & 5(1) \\ N(13) & 2737.2(4) & 9447.5(7) & 9938.0(07) & 7(1) \\ C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ N(17) & 6284.0(4) & 1986.2(7) & 2043.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & -804.0(9) & 7(1) \\ C(19) & 6620.5(5) & 130.5(9) & -804.0(9) & 7(1) \\ C(19) & 6620.5(5) & 130.5(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -653.3(8) & 6(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8385.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ C(22) & 6021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ C(22) & 6021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ C(22) & 6021.4(4) & 1057.7(8) & 533.4(5) & 3(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ C(22) & 6023.4(1) & 4906.4(9) & 5111.4(10) & 7(2) \\ C(23) & 6078.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(33) & 12.93.8(& 4619.3(9) & 7309.4(10) & 17(3) \\ C(33) & 12.93.8(& 4619.3(9) & 7309.4(10) & 17(3) \\ C(33) & 12.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(34) & 7930.4(4) & 10003.1(13) & 5569.0(15) & 2144 \\ O(44) & 4310.0(5) & 9513.8(11) & 7344.4(1) & 3(0) \\ O(42) & 6199.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 4030.7(4) & 10003.1(13) & 5569.0(15) & 2144 \\ O(44) & 4310.0(5) & 9513.8(11) & 734.4(8) & 932.9(7) & 7(1) \\ C(14) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 4310.0(5) & 9513.8(11) & 734.4(1) & 17(4) \\ O(44) & 4310.0(5) & 9513.8(11) & 734.4(1) & 3(0) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 977.5$	C(4)	1099.2(2) 1193 1(4)	7418 4 (8)	4225 5(8)	6(1)
	C(5)	1051.6(4)	6320 9 (8)	$\frac{4225.5(8)}{3508.1(8)}$	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(6)	24281(4)	5586 3(7)	4971 5(7)	7(1)
$\begin{array}{c} C(5) & 3643.2(3) & 3677.3(4) & 5960.3(5) & 3(1) \\ C(9) & 4156.4(3) & 5115.7(6) & 7659.0(6) & 4(1) \\ C(11) & 3481.3(4) & 6166.7(7) & 819.4(7) & 7(1) \\ C(11) & 3893.3(2) & 7388.6(4) & 10136.5(4) & 2(1) \\ C(12) & 3266.3(3) & 871.79(7) & 10851.5(8) & 5(1) \\ N(13) & 2737.2(4) & 9447.5(7) & 9386.0(7) & 7(1) \\ C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6601.6(8) & 6(1) \\ N(17) & 6284.0(4) & 19962.2(7) & 2043.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ C(12) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 5385.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(26) & 6085.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(26) & 6085.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(31) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(33) & 4936.9(4) & 799.0(7) & 5519.1(7) & 301.0(7) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(36) & 6085.0(5) & 2185.0(9) & 377.5(9) & 7(1) \\ C(36) & 4930.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(44) & 7451.0(3) & 5217.3(7) & 473.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 473.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 473.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 473.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44)$	C(7)	3249.0(5)	4420 0 (9)	4460 0 (0)	7(1)
$\begin{array}{c} C(9) & J0524(5) & J0517(7) & J0507(5) & J10 \\ C(10) & 34154(3) & 51157(6) & 7659.0(6) & 4(1) \\ N(10) & 3481.3(4) & 61667(7) & 8519.4(7) & 7(1) \\ C(11) & 389.3(2) & 7388.6(4) & 10136.5(4) & 2(1) \\ C(12) & 3266.3(3) & 8717.9(7) & 10851.5(8) & 5(1) \\ N(13) & 2737.2(4) & 9447.5(7) & 9386.0(7) & 7(1) \\ C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ N(17) & 6284.0(4) & 1996.2(7) & 2043.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ C(19) & 6620.5(5) & 130.5(9) & -804.0(9) & 7(1) \\ N(20) & 7574.0(4) & 626.2(7) & 354.(7) & 7(1) \\ C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(14) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 6107.7(3) & 3872.6(5) & 5888.3(5) & 3(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5888.3(5) & 3(1) \\ C(30) & 6088.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(33) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(44) & 7451.0(3) & 5217.3(7) & 4374.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 434.9(7) & 10(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 1933.3(2) & 1380.2(6) & 4922.1(6) & 7711 \\ O(45) & 3947.6(2) & 3939.0(3) & 3366.1(4) & 4(1) \\ O(46) & 1194.8(4) & 1820.4(7) & 377.4(6) & 6(1) \\ O(47) & 6302.4(2) & 774.2(4) & 10603.7(7) & 971.5(6) & 6(1) \\ O(48) & 1948.4(2) & 1857.9(5) & 1071.5(6) &$	C(8)	3643 3(3)	36773(4)	5960 3 (5)	3(1)
$\begin{array}{c} (1) & 34913(4) & 61667(7) & 8519.4(7) & 7(1) \\ (11) & 38932(2) & 73886(4) & 10136.5(4) & 2(1) \\ (12) & 3266.3(3) & 87179(7) & 10851.5(8) & 5(1) \\ (13) & 2737.2(4) & 9447.5(7) & 9386.0(7) & 7(1) \\ (14) & 1927.4(3) & 10356.9(7) & 9342.1(6) & 4(1) \\ (15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ (16) & 1067.0(4) & 9993.7(8) & 6001.6(8) & 6(1) \\ (16) & 1067.0(4) & 9993.7(8) & 6001.6(8) & 6(1) \\ (16) & 1067.0(4) & 9993.7(8) & 6001.6(8) & 6(1) \\ (17) & 6284.0(4) & 13966.2(7) & 2043.7(7) & 7(1) \\ (18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ (19) & 6620.5(5) & 130.5(9) & - 804.0(9) & 7(1) \\ (21) & 8016.4(4) & 651.3(9) & - 1404.2(10) & 7(2) \\ (22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ (23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ (24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ (25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ (26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ (16) & (73) & 3872.6(5) & 5088.3(5) & 3(1) \\ (23) & 60638.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ (23) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ (013) & 129.3(8) & 4619.3(9) & 73094.1(0) & 17(3) \\ (013) & 742.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ (013) & 312.19.3(8) & 4619.3(9) & 73094.1(1) & 17(3) \\ (13) & 742.2(1) & 5884.3(2) & 8761.0(2) & 5(0) \\ (013) & 312.19.3(8) & 4619.3(9) & 73094.1(1) & 17(3) \\ (13) & 724.2(1) & 5930.0(8) & 9329.9(7) & 9(1) \\ (13) & 724.2(1) & 5930.0(8) & 9329.9(7) & 9(1) \\ (13) & 6130.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ (13) & 6130.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ (13) & 6140.5(5) & 9513.8(11) & 7564.3(1) & 3(0) \\ (14) & 6120.7(2) & 5930.0(18) & 9329.9(7) & 9(1) \\ (13) & 6140.5(5) & 9513.8(11) & 7564.3(1) & 3(0) \\ (14) & 6120.7(2) & 5930.0(18) & 9329.9(7) & 9(1) \\ (15) & 312.7(3) & 5991.0(7) & 5118.7(7) & 441.4(1) & 3(0) \\ (14) & 6140.7(2) & 5930.0(13) & 3976.6(5) & 4(1) \\ (14) & 6140.7(2) & 5217.3(7) & 437.4(8) & 922 \\ (14) & 6140.7(3) & 3129.2(6) & 4292.1(6) & 7(1) \\ (15) & 7848.7(3) & -654.6(7) & 3366.1(4) & 4(1) \\ (14) & 0(44) & 1300.0(5) & 9737.7(3) & 6791.3) & 2(0) \\ (14) & 6150.7(4$	C(9)	41564(3)	51157(6)	7659.0(6)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(10)	34813(4)	61667(7)	85194(7)	7(1)
C(12) $3266.3(3)$ $8717.9(7)$ $10851.5(8)$ $5(1)$ N(13) $2737.2(4)$ $9447.5(7)$ $9386.0(7)$ $7(1)$ C(14) $1927.4(3)$ $10586.9(7)$ $9334.2(6)$ $4(1)$ C(15) $1476.2(4)$ $11075.2(6)$ $8349.6(9)$ $6(1)$ C(16) $1067.0(4)$ $9993.7(8)$ $6901.6(8)$ $6(1)$ N(17) $6284.0(4)$ $1986.2(7)$ $2043.7(7)$ $7(1)$ C(18) $6150.1(5)$ $310.3(9)$ $789.6(9)$ $7(1)$ C(19) $6620.5(5)$ $130.5(9)$ $-804.0(9)$ $7(1)$ C(21) $8016.4(4)$ $661.3(9)$ $-1408.2(10)$ $7(2)$ C(22) $9021.4(4)$ $1057.7(8)$ $-993.3(8)$ $6(1)$ C(23) $9224.2(4)$ $2762.2(6)$ $663.6(6)$ $5(1)$ N(24) $8905.1(3)$ $2966.1(4)$ $2313.9(4)$ $4(1)$ C(25) $8985.1(4)$ $4690.4(9)$ $5111.4(10)$ $7(2)$ N(27) $7591.9(4)$ $4906.4(9)$ $5111.4(10)$ $7(2)$ N(27) $7591.9(4)$ $4908.9(7)$ $5361.2(7)$ $7(1)$ C(28) $7085.3(5)$ $2185.0(9)$ $3775.9(9)$ $7(1)$ C(29) $6107.7(3)$ $3872.6(5)$ $5088.3(5)$ $3(1)$ C(30) $6058.0(5)$ $2185.0(9)$ $3775.9(9)$ $7(1)$ C(31) $724.2(1)$ $5884.3(2)$ $8561.0(2)$ $5(0)$ O(33) $1219.3(8)$ $4619.3(9)$ $7309.4(10)$ $17(3)$ O(34) $1620.7(2)$ $5930.0(8)$ $9322.9(7)$ $9(1)$ O(35) $312.7(3)$ $5084.6(5)$ $9327.3(7)$ $7(1)$ C(36) $4379.0(1)$ $9024.3(1)$ $5744.4(1)$ $3(0)$ O(37) $3711.2(4)$ $8166.1(7)$ $4543.9(7)$ $10(1)$ O(38) $4936.9(4)$ $7591.0(7)$ $5519.1(17)$ $21(4)$ O(44) $1400.0(5)$ $9513.8(11)$ $7364.3(8)$ $9(2)$ O(45) $6125.7(4)$ $5825.4(9)$ $1643.9(6)$ $10(2)$ N(46) $1194.8(4)$ $1820.4(7)$ $3724.0(12)$ $12(2)$ O(47) $601.1(3)$ $679.1(3)$ $679.1(3)$ $6(1)$ O(48) $1154.3(2)$ $3133.0(3)$ $3366.1(4)$ $4(1)$ O(44) $194.8(4)$ $1820.4(7)$ $3724.0(12)$ $12(2)$ O(47) $610.1(3)$ $997.0(5)$ $3037.1(5)$ $6(1)$ O(48) $1154.3(2)$ $3133.0(3)$ $3366.1(4)$ $4(1)$ O(49) $913.3(2)$ $1382.2(6)$ $7724.0(12)$ $12(2)$ O(47) $501.1(3)$ $679.1(3)$ $679.1(3)$ $679.1(3)$ $679.1(3)$ $679.1(3)$ $679.1(3)$	C(11)	3859.3(2)	7388 6(4)	10136 5(4)	2(1)
N(13) $2737.2(4)$ $9447.5(7)$ $9386.0(7)$ $7(1)$ C(14) $1927.4(3)$ $10356.9(7)$ $9934.2(6)$ $4(1)$ C(15) $1476.2(4)$ $11075.2(6)$ $8349.6(9)$ $6(1)$ C(16) $1067.0(4)$ $9993.7(8)$ $6901.6(8)$ $6(1)$ C(16) $1067.0(4)$ $9993.7(8)$ $6901.6(8)$ $6(1)$ C(18) $6150.1(5)$ $310.3(9)$ $789.6(9)$ $7(1)$ C(18) $6150.1(5)$ $310.3(9)$ $789.6(9)$ $7(1)$ C(21) $8016.4(4)$ $651.3(9)$ $-1408.2(10)$ $7(2)$ C(22) $9021.4(4)$ $1057.7(8)$ $-593.3(8)$ $6(1)$ C(23) $9224.2(4)$ $2762.2(6)$ $663.6(6)$ $5(1)$ N(24) $8903.1(3)$ $2966.1(4)$ $2313.9(4)$ $4(1)$ C(25) $8985.1(4)$ $4682.5(9)$ $3507.1(9)$ $6(1)$ C(26) $8558.0(4)$ $4906.4(9)$ $5111.4(10)$ $7(2)$ N(27) $7991.9(4)$ $4492.5(7)$ $5361.2(7)$ $7(1)$ C(28) $7085.3(5)$ $4190.0(9)$ $5488.0(9)$ $7(1)$ C(29) $6107.7(3)$ $3872.6(5)$ $5088.3(5)$ $3(1)$ C(29) $6007.7(3)$ $3872.6(5)$ $5088.3(5)$ $3(1)$ C(30) $658.0(5)$ $2188.0(9)$ $775.9(9)$ <t< td=""><td>C(12)</td><td>3266.3(3)</td><td>8717.9(7)</td><td>10851.5(8)</td><td>5(1)</td></t<>	C(12)	3266.3(3)	8717.9(7)	10851.5(8)	5(1)
$\begin{array}{ccccc} C(14) & 1927.4(3) & 10586.9(7) & 9934.2(6) & 4(1) \\ C(15) & 1476.2(4) & 11075.2(6) & 8349.6(9) & 6(1) \\ C(16) & 1067.0(4) & 9993.7(8) & 6901.6(8) & 6(1) \\ N(17) & 6284.0(4) & 1986.2(7) & 2043.7(7) & 7(1) \\ C(18) & 6150.1(5) & 310.3(9) & 789.6(9) & 7(1) \\ C(19) & 6620.5(5) & 130.5(9) & -804.0(9) & 7(1) \\ N(20) & 7574.0(4) & 626.2(7) & 35.4(7) & 7(1) \\ C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 2924.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8003.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(31) & 129.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 16(2) \\ O(33) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C(141) & 6338.4(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 1300.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C(141) & 6338.4(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(44) & 1494.8(4) & 18204.7(7) & 3724.0(12) & 12(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 9133.3(2) & 1382.2(6) & 4729.1(6) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) &$	N(13)	2737.2(4)	9447.5(7)	9386.0(7)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	1927.4(3)	10586.9(7)	9934.2(6)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	1476.2(4)	11075.2(6)	8349.6(9)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č(16)	1067.0(4)	9993.7(8)	6901.6(8)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(17)	6284.0(4)	1986.2(7)	2043.7(7)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	6150.1(5)	310.3(9)	789.6(9)	7(1)
$\begin{array}{c ccccc} N(20) & 7574.0(4) & 626.2(7) & 35.4(7) & 7(1) \\ C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8585.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(136) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 4774.8(8) & 9(2) \\ O(44) & 7451.0(3) & 5217.3(7) & 4774.8(8) & 9(2) \\ O(44) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 957.5(5) & 930.1(6) & 6(1) \\ O(53) & 4622.5(2) & 3876.9(5) & 930.1(6) & 6(1) \\ O(54) & 4622.5(2) & 3876.9(5) & 930.1(6) & 6(1) \\ O(55) & 846.7(3) & -654.6(7) & 3469.9(7) & 9$	C(19)	6620.5(5)	130.5(9)	-804.0(9)	7(1)
$\begin{array}{ccccccc} C(21) & 8016.4(4) & 651.3(9) & -1408.2(10) & 7(2) \\ C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(131) & 724.2(1) & 5884.3(2) & 8861.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 166(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C1(36) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(40) & 4310.0(5) & 9113.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5404.4(1) & 7461.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 626.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 774.0(12) & 12(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 372.40(12) & 12(2) \\ O(47) & 500.1(3) & 977.3(3) & 679.1(3) & 2(0) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ O(52) & 4632.5(2) & 376.9(5) & 930.1(6) & 6(1) \\ N(54) & 8600.6(4) & -434.9(7) & 4218.1(7) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3$	N(20)	7574.0(4)	626.2(7)	35.4(7)	7(1)
$\begin{array}{ccccccc} C(22) & 9021.4(4) & 1057.7(8) & -593.3(8) & 6(1) \\ C(23) & 9224.2(4) & 2762.2(6) & 663.6(6) & 5(1) \\ N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(36) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(43) & 626.7(3) & 3808.8(4) & -70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6226.7(4) & 3825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ N(50) & 3947.6(2) & 3073.7(3) & 679.1(3) & 2(0) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ N(54) & 8600.6(4) & -434.9(7) & 4218.1(7) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3499.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3499.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 349.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 349.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 349.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 349.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 349.9(7) & 9(1) \\ O(57) & 8724.7(6) & 975.1(7) & 4841.3(8) & 13(2) \\ O(W1) & 636.4(2) & 7724.2(4) & 5066.5(5$	C(21)	8016.4(4)	651.3(9)	-1408.2(10)	7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	9021.4(4)	1057.7(8)	- 593.3(8)	6(1)
$\begin{array}{c ccccc} N(24) & 8903.1(3) & 2966.1(4) & 2313.9(4) & 4(1) \\ C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(131) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(136) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(44) & 6195.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ N(50) & 3947.6(2) & 3073.7(3) & 679.1(3) & 2(0) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ N(54) & 8600.6(4) & -434.9(7) & 4218.1(7) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 8962.3(4) & -1553.5(5) & 5123.9(7) & 8(1) \\ O(57) & 8724.7(6) & 975.1(7) & 4841.3(8) & 13(2) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \\ \end{array}$	C(23)	9224.2(4)	2762.2(6)	663.6(6)	5(1)
$\begin{array}{cccccc} C(25) & 8985.1(4) & 4682.5(9) & 3507.1(9) & 6(1) \\ C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C(131) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 93229.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C(136) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C(141) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ N(50) & 3947.6(2) & 3073.7(3) & 679.1(3) & 2(0) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ O(52) & 4632.5(2) & 3876.9(5) & 930.1(6) & 6(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 1071.5(6) & 6(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 1071.5(6) & 6(1) \\ N(54) & 8600.6(4) & -434.9(7) & 4218.1(7) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 8962.3(4) & -1553.5(5) & 5123.9(7) & 8(1) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \\ \end{array}$	N(24)	8903.1(3)	2966.1(4)	2313.9(4)	4(1)
$\begin{array}{ccccccc} C(26) & 8558.0(4) & 4906.4(9) & 5111.4(10) & 7(2) \\ N(27) & 7591.9(4) & 4492.5(7) & 5361.2(7) & 7(1) \\ C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C1(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C1(36) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 336.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 1071.5(6) & 6(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 930.1(6) & 6(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 1071.5(6) & 6(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(56) & 8962.3(4) & -1553.5(5) & 5123.9(7) & 8(1) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \\ \end{array}$	C(25)	8985.1(4)	4682.5(9)	3507.1(9)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	8558.0(4)	4906.4(9)	5111.4(10)	7(2)
$\begin{array}{cccccc} C(28) & 7085.3(5) & 4190.0(9) & 5648.0(9) & 7(1) \\ C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C1(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C1(36) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 10(2) \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 8962.3(4) & -1553.5(5) & 5123.9(7) & 8(1) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \\ \end{array}$	N(27)	7591.9(4)	4492.5(7)	5361.2(7)	7(1)
$\begin{array}{cccccc} C(29) & 6107.7(3) & 3872.6(5) & 5088.3(5) & 3(1) \\ C(30) & 6058.0(5) & 2185.0(9) & 3775.9(9) & 7(1) \\ C1(31) & 724.2(1) & 5884.3(2) & 8561.0(2) & 5(0) \\ O(32) & 326.6(5) & 6740.9(8) & 7529.3(10) & 16(2) \\ O(33) & 1219.3(8) & 4619.3(9) & 7309.4(10) & 17(3) \\ O(34) & 1620.7(2) & 5930.0(8) & 9329.9(7) & 9(1) \\ O(35) & 312.7(3) & 5084.6(5) & 9327.3(7) & 7(1) \\ C1(36) & 4379.0(1) & 9024.3(1) & 5744.4(1) & 3(0) \\ O(37) & 3711.2(4) & 8166.1(7) & 4543.9(7) & 10(1) \\ O(38) & 4936.9(4) & 7591.0(7) & 5519.1(17) & 21(4) \\ O(39) & 4903.7(4) & 10003.1(13) & 5569.0(15) & 21(4) \\ O(40) & 4310.0(5) & 9513.8(11) & 7361.3(8) & 14(2) \\ C1(41) & 6538.1(1) & 5406.8(3) & 70.6(3) & 8(0) \\ O(42) & 6190.1(2) & 6372.8(4) & -713.7(5) & 4(1) \\ O(43) & 6266.7(3) & 3809.8(4) & -842.8(5) & 5(1) \\ O(44) & 7451.0(3) & 5217.3(7) & 437.4(8) & 9(2) \\ O(45) & 6125.7(4) & 5825.4(9) & 1643.9(6) & 1002 \\ N(46) & 1194.8(4) & 1820.4(7) & 3724.0(12) & 12(2) \\ O(47) & 560.1(3) & 997.0(5) & 3037.1(5) & 6(1) \\ O(48) & 1154.3(2) & 3193.0(3) & 3366.1(4) & 4(1) \\ O(49) & 1933.3(2) & 1380.2(6) & 4292.1(6) & 7(1) \\ N(50) & 3947.6(2) & 3073.7(3) & 679.1(3) & 2(0) \\ O(51) & 3244.5(3) & 3543.6(5) & -1.2(6) & 7(1) \\ O(52) & 4632.5(2) & 3876.9(5) & 930.1(6) & 6(1) \\ O(53) & 4062.0(3) & 1857.9(5) & 1077.5(6) & 6(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(55) & 7848.7(3) & -654.6(7) & 3469.9(7) & 9(1) \\ O(56) & 8962.3(4) & -1553.5(5) & 5123.9(7) & 8(1) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \\ \end{array}$	C(28)	7085.3(5)	4190.0(9)	5648.0(9)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	6107.7(3)	3872.6(5)	5088.3(5)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	6058.0(5)	2185.0(9)	3775.9(9)	7(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl(31)	724.2(1)	5884.3(2)	8561.0(2)	5(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(32)	320.0(5)	6/40.9(8)	7529.3(10)	10(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(33)	1219.3(8)	4019.3(9)	/309.4(10)	17(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(34)	1020.7(2)	50946(5)	9329.9(7)	9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(33)	312.7(3)	00343(1)	9327.3(7) 57AAA(1)	$\frac{7(1)}{3(0)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(37)	$\frac{4373.0(1)}{3711.2(4)}$	81661(7)	45439(7)	10(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(37)	4936 9(4)	75910(7)	55191(17)	21(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(30)	4903 7(4)	10003 1(13)	5569 0(15)	21(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(40)	4310.0(5)	9513.8(11)	7361.3(8)	14(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CI(41)	6538.1(1)	5406.8(3)	70.6(3)	8(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(42)	6190.1(2)	6372.8(4)	-713.7(5)	4(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(43)	6266.7(3)	3809.8(4)	-842.8(5)	5(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(44)	7451.0(3)	5217.3(7)	437.4(8)	9(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(45)	6125.7(4)	5825.4(9)	1643.9(6)	10(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(46)	1194.8(4)	1820.4(7)	3724.0(12)	12(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(47)	560.1(3)	997.0(5)	3037.1(5)	6(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(48)	1154.3(2)	3193.0(3)	3366.1(4)	4(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(49)	1933.3(2)	1380.2(6)	4292.1(6)	7(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(50)	3947.6(2)	3073.7(3)	679.1(3)	2(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(51)	3244.5(3)	3543.6(5)	-1.2(b)	/(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(52)	4032.5(2)	38/0.9(3)	930.1(0)	0(1) 6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U(53)	4002.0(3) 8600 6(4)	(0, 1, 2, 3, 1, 2, 1,	4218 1(7)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D(54)	7848 7(3)	-6546(7)	34699(7)	9(1)
$\begin{array}{ccccccc} O(57) & 8724.7(6) & 975.1(7) & 4841.3(8) & 13(2) \\ O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \end{array}$	O(55)	8962 3(4)	-1553 5(5)	5123.9(7)	8(1)
$\begin{array}{cccc} O(W1) & 6836.4(2) & 7724.2(4) & 5066.5(5) & 4(1) \\ O(W2) & 8392.8(3) & 7397.6(6) & -77.9(9) & 10(2) \end{array}$	O(57)	8724 7(6)	9751(7)	4841.3(8)	13(2)
O(W2) 8392.8(3) 7397.6(6) -77.9(9) 10(2)	O(W1)	6836.4(2)	7724.2(4)	5066.5(5)	4(1)
	O(W2)	8392.8(3)	7397.6(6)	-77.9(9)	10(2)

^aAnisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $4/3\Sigma_i\Sigma_j\beta_{ij}a_ia_j$.

	(),	-		
Au(1) - N(3)	2.023(45)		Au(1)-N(6)	1.959(49)
Au(1) - N(10)	2.108(60)		Au(1) - N(13)	2.103(48)
Au(2) - N(17)	2.050(60)		Au(2) - N(20)	1.928(49)
Au(2) - N(24)	2.075(44)		Au(2) - N(27)	2.090(48)
$O(38) \cdots O(W1) [x, y]$, z] 2.9	9(8)	$N(6 \cdots O(48) [x, y, z]$	2.85(6)
$N(17) \cdots O(52) [x, y]$	z] 2.9	6(6)	$N(27) \cdots O(W1) [x, y, z]$	2.79(6)
$O(44) \cdots O(W2)$	2.7	0(9)	$O(45) \cdots O(W1) [x, y, z]$	2.85(6)
$N(24) \cdots O(47) [x + 1]$	l, y, z] 2.9	1(6)	$N(20) \cdots O(W2) [x, y-1, z]$	2.88(8)
$N(3) \cdots O(49) \overline{x}, y +$	1, z] 2.9	7(8)	$N(13) \cdots O(53) [x, y+1, z+1]$	2.92(7)
$N(10)\cdots O(51)[x, y,$	$z + \tilde{1}$] 2.92	2(9)		
N(3) - Au(1) - N(6)	86.9(21))	N(3) - Au(1) - N(13)	95.0(20)
N(6) - Au(1) - N(10)	94.0(24))	N(10) - Au(1) - N(13)	84.1(22)
N(17) - Au(2) - N(20)	85.4(24))	N(17) - Au(2) - N(27)	94.9(23)
N(20)-Au(2)-N(24)	96.1 (20))	N(24) - Au(2) - N(27)	83.3(19)

 TABLE III

 Selected bond distances (Å), intermolecular hydrogen bond distances (Å) and bond angles (deg) for 1

factors in Table II. Selected bond distances, hydrogen bond distances, and bond angles are presented in Table III.

Electrochemical Measurements

Cyclic and dc voltammetries were performed with a Yanaco P-1100 polarigraphic analyzer system at $25.0 \pm 0.1^{\circ}$ C and I = 0.50 (NaClO₄ or NaCl). A three-electrode system was employed: a gold ($\phi = 1.6 \text{ mm}$) or nickel ($\phi = 3.0 \text{ mm}$) rotating-diskelectrode (RDE) as the working electrode, a glassy-carbon rod ($\phi = 3.0 \text{ mm}$) as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. All redox potentials in this article are given with reference to SCE. The cyclic and dc voltammograms were evaluated graphically at scan rates of 200 and 10 mV sec⁻¹, and electrode rotation rates of 0 and 2000 rpm, respectively. All working electrodes were polished between measurements with fine aluminium oxide powder (BAS Co.). All solutions were deaerated in a stream of pure argon gas (>99.999%).

Controlled-potential coulometry was carried out with a Yanaco VE-9 potentiostat and a Yanaco V10-CM coulometer using a nickel plate (*ca* 10 cm², 99.9% purity) as the working electrode at -0.45 V vs SCE, pH 7.0 (20 mM HEPES buffer), 25°C, and I = 0.50 (NaClO₄). The aqueous solution used (50 cm³) contained 1.0 mM of Au^{III}-cyclam 1. The Au^{III}-reduction current was level within 25 min, where the UV absorption band for Au^{III}-cyclam (λ_{max} 360 nm, ε 2160 M⁻¹ cm⁻¹ at pH 7.0) almost disappeared (<1%).¹ The coulometry of 1 was 3.02 ± 0.05 e/Au, which confirmed that three electron reduction (Au^{III} \rightarrow Au⁰) occurred.

Dc polarograms (RDE) for 1.0 mM 8 in DMF were measured with a glassy carbon electrode at I = 0.10 (Et₄NClO₄) and 25°C. The total reduction current corresponds to 3e⁻ (the same as Au^{III} \rightarrow Au⁰ for 1 under the same conditions). However, for 8, three step waves (each 1/3 of the total current) were observed.

RESULTS AND DISCUSSION

X-ray Crystal Structure of Au^{III}-cyclam (1)

A single crystal for X-ray analysis of $1 \cdot (ClO_4)_{1.5}(NO_3)_{1.5} \cdot H_2O$ was obtained by recrystallization of $1 \cdot Cl(ClO_4)_2$ from 1 M aqueous HNO₃ solution. The detailed molecular structure has been clarified by X-ray analysis of $1 \cdot (ClO_4)_{1.5}(NO_3)_{1.5} \cdot H_2O$. The crystal structure consists of two independent cations per unit cell with associated anions and two lattice water molecules. The cyclam ligands bound to Au(1) and Au(2) adopt the same overall stereochemistry with the most stable *trans* III (*RRSS*) conformation¹² (Figure 1). The Au^{III} atoms are located in the centres of the N₄ planes and the total equatorial angles for N-Au-N are 360.0° for Au(1)-cyclam and 359.7° for Au(2)-cyclam. Selected bond distances and angles around Au^{III} are summarized in Table III.

The cyclam in 1 takes the same configuration as other metal cyclam complexes. The average metal-N bond length of 1 (*ca* 2.04 Å) is close to those of the Pd^{II}- (2.05 Å),¹³ Ni^{II}- (2.06 Å),¹⁴ and Pt^{IV}-cyclam (2.04 Å) complexes.¹⁵ In comparison with the unsaturated macrocyclic β -diminate complex 10, in which the four Au^{III}-N bond lengths are almost equal (1.98 Å),¹⁶ those in 1 are widely scattered, ranging from 1.93 Å to 2.11 Å. This is probably due to the more flexibility of the

saturated macrocyclic N_4 ligand and the strong hydrogen bonds with counter anions. The amine hydrogens of 1, whose acidity is reinforced by a strongly acidic Au^{III} ion,¹ closely associate with the anionic oxygens of ClO_4^- and NO_3^- ions, and the lattice water molecules (Figure 2). Interestingly, neither the anions nor the water molecules are sufficiently close to the Au^{III} for any significant interaction.

Electrochemistry of Au^{III}-cyclams (1), (3), and (4)

Cyclic voltammetry (CV) of 1 at pH 3.0 (20 mM citrate buffer), I = 0.50 (NaClO₄), and 25°C displayed irreversible reduction waves with peak potentials at -0.30 V (on nickel disk electrode) or -0.25 V (gold disk electrode), where no corresponding oxidation waves were observed. On repetition of the CV scans, the surface of the nickel-disk-electrode turned a golden colour due to gold deposition. Controlledpotential coulometry of 1.0 mM at -0.45 V (see Experimental) indicated an electron flow of 3.02 ± 0.05 e/Au. Into the final reduction solution was released 1.0 mM intact cyclam ligand, which was determined by the formation of an equimolar Cu^{II}-cyclam complex (λ_{max} 506 nm, ε 80).¹⁷ We thus conclude that Au^{III} in 1 is completely converted to gold with quantitative recovery of metal-free cyclam (see reaction (2)).

$$[Au^{III}-cyclam]^{3+} + 3e^{-} \rightarrow Au^{0} + cyclam \qquad (2)$$

pH	$E_{1/2}^{a}$				
	1	3	4	5	6
1.0b 3.0c 7.0d 9.0e	$\begin{array}{c} -0.16 \ (-0.16)^{f} \\ -0.24 \ (-0.25)^{f} \\ -0.44 \ (-0.47)^{f} \\ -0.55 \ (-0.55)^{f} \end{array}$	-0.18 -0.20 -0.41 -0.54	-0.17 -0.28 -0.46 -0.77	+0.33 +0.29 -0.06 -0.35	+0.13 +0.10 -0.12 -0.24

TABLE IV Comparison of the reduction potentials ($E_{1/2}$, V vs SCE) of Au^{III}-polyamine complexes 1-6 at various pH values on a gold RDE at 25°C and I = 0.50 (NaClO₄)

^a $E_{1/2}$ values are the half wave reduction potentials (Au^{III} \rightarrow Au⁰) in the first scan.

^bHClO₄ buffer.

^c20 mM citrate buffer.

^d20 mM HEPES buffer.

^e20 mM phosphate buffer.

¹The values in parentheses are measured with a nickel RDE under the same conditions.

In order to compare the irreversible reduction potentials of the Au^{III} complexes, 1, 3, 4, 5 and 6, we conducted a dc voltammetric study using nickel and gold rotating disk electrodes (RDE). Typical current-potential curves of 1 with a gold RDE at pH 3.0 are shown in Figure 3. Similar $3e^-$ reduction RDE voltammograms with almost the same limiting current were observed for other Au^{III} complexes, 3, 4, 5 and 6 under the same conditions. The half wave reduction potentials ($E_{1/2}$) of these Au^{III} complexes in the first scan (from less negative side) are summarized in Table IV. Interestingly, in the second and the following repeated dc voltammetric scans (where the electrode is left unpolished) (Figure 3), the reduction waves of 1 gradually shifted

FIGURE 3 Dc voltammograms with a gold RDE at 2000 rpm, scan rate = 10 mV s⁻¹, I = 0.50 M (NaClO₄), pH 3.0 (20 mM citrate buffer), and 25°C; (a) in the absence of 1; (b) 1.0 mM of 1 at the 1st scan ($E_{1/2} = -0.24$ V); (c) at the second scan ($E_{1/2} = -0.17$ V); (d) at the 10th scan ($E_{1/2} = -0.08$ V).

from $E_{1/2} = -0.24$ V to more positive potentials (-0.08 V at the 10th scan). Similar electrochemical behaviour and almost the same $E_{1/2}$ values (Table IV) were observed with a nickel RDE under the same conditions. This fact suggests that the electrode surface upon gold deposition enhances further electroreduction of 1. The prospect of self-catalyzed gold deposition in the reduction of Au^{III}-cyclam 1 has prompted us to undertake Au^{III}-cyclam-mediated, gold-plating on a nickel substrate, as described below.

At a higher pH of 7.0 (20 mM HEPES buffer), Au^{III} -cyclam 1 is in a monodeprotonated form 2 (its pK_a is 5.4), and this shows a $3e^-$ reduction wave at -0.44 V during the first scan, far below the potential of -0.24 V of the undissociated form 1 (at pH 3). This is consistent with greater stabilization of Au^{III} by the coordination of an N⁻ anion. The $E_{1/2}$ values (first scan only) for a series of the Au^{III} -polyamine complexes 1, 3, 4, 5 and 6 at different pH values (1, 3, 7, and 9) are compiled in Table IV. It is evident that in the macrocyclic complexes 1, 3, and 4, Au^{III} ions are more difficult to reduce to A^0 relative to the linear homologues 5 and 6 at the given pH's. This result demonstrates that the Au^{III} state is stabilized by the macrocyclic ligands and this may be described as a "macrocyclic effect".

Gold Plating on Nickel Metal by a Non-electrolytic Method

Robust and smooth gold deposits, which cannot be scrubbed off, were produced by merely immersing a nickel plate into an acidic aqueous solution (pH 1.0 HCl buffer) of Au^{III}-cyclam complex 1 at I = 0.50 NaCl and room temperature. This is the first observation of direct chemical gold-plating on a pure nickel substrate, which is achieved only by the Au^{III}-macrocyclic tetraamine complex. This fact suggests the likelihood of gold-plating by the displacement reaction (3).

$$3Ni^{0} + 2Au^{III}$$
-cyclam $\rightarrow 3Ni^{2+}_{ao} + 2Au^{0} + 2cyclam$ (3)

The reduction potential of Au^{III}-cyclam 1 on the nickel RDE at pH 1.0 was -0.16 V in the first scan (Figure 4b), while the oxidation of the nickel RDE electrode as expressed in reaction (4) was observed at ~ +0.1 V (Figure 4a). Theoretically, therefore, the reduction of Au^{III} in 1 to Au⁰ by nickel metal (reaction (3)) should not be feasible. It is thus considered that the observed "underpotential gold deposition" would involve some self-catalytic action.¹⁸ As displayed by Figure 4c, the reduction potential of 1 becomes closer to the oxidation potential of Ni⁰, as the gold-plating proceeds.

$$Ni^0 \rightarrow Ni^{2+}_{aq} + 2e^- \tag{4}$$

For investigation of the reaction (3), the plating process on a nickel plate $(0.3 \times 10 \times 10 \text{ mm}, \text{purity} > 99.9\%)$ with 0.15 mM of Au^{III}-cyclam 1 with mechanical stirring (500 rpm) at I = 0.50 (NaCl), pH 1.0 (HCl buffer), and 25°C was followed by atomic absorption spectroscopy for Ni²⁺ ion, and by UV spectroscopy for disappearing Au^{III}-cyclam 1 (λ_{max} 220 nm, ε 12300 at pH 1.0). During the initial 60 min *ca* half of the Au^{III}-cyclam was rapidly reduced. The generated Ni²⁺ ion was 0.54 mM, far more than the *ca* 0.11 mM value theoretically predicted from reaction (3). Apparently unavoidable reaction (5) is simultaneously occurring. The reduction of 1 with copper metal did not occur, as rationalized by the lower ionization tendency (or higher ionization potential) of copper metal.

$$Ni^{0} + 2H^{+} \rightarrow Ni_{ag}^{2+} + H_{2}^{\uparrow}$$
(5)

FIGURE 4 Dc voltammograms with a nickel RDE at 2000 rpm, scan rate = 10 mV s⁻¹, I = 0.50 M (NaCl), pH 1.0 (HCl buffer), and 25°C: (a) in the absence of 1; (b) 1.0 mM of 1 at the 1st scan $(E_{1/2} = -0.16$ V); (c) at the 10th scan $(E_{1/2} = -0.07$ V); (d) after electrolytic gold-plating at an applied potential of -0.15 V vs SCE for 15 min $(E_{1/2} = -0.10$ V).

By contrast, reductions of Au^{III} in the linear amine complexes, $[Au^{III}(dien)Cl]^{2+}$ 5 ($E_{1/2} = +0.33$ V at pH 1), $[Au^{III}(en)_2]^{3+}$ 6 ($E_{1/2} = +0.13$ V at pH 1), and $[Au^{III}Cl_4]^-$ ($E(Au^{III/0}) = +0.76$ V)¹⁹ with nickel metal (Ni⁰) looked much easier in the light of their more positive potentials (Figure 5). However, the reduction of these Au^{III} species with nickel metal plate did not yield smooth gold plating. Instead, black Au⁰ particles quickly precipitated.

Recently, non-electrolytic ("electroless") gold-plating attracted great attention, especially for selective plating on patterned substrates (*e.g.*, nickel, copper) for electronic devices.^{18,20} Conventional methods employ $KAu^{I}(CN)_2$, $KAu^{II}(CN)_4$, or $KAu^{III}Cl_4$ (as gold source), in the presence of reducing agents (*e.g.*, KBH_4 , HCHO, NH_2NH_2 , or NaH_2PO_2).^{18,20} Our non-electrolytic plating procedure (on nickel) is much simpler. However, attempts at non-electrolytic gold-plating on copper with 1 in the presence of reducing agents have thus far ended in failure.

Gold Plating on Nickel Metal by an Electrolytic Method

The electrochemical reduction of Au^{III}-cyclam 1 produced fine and smooth-looking gold deposition on a nickel RDE electrode at pH 1.0 (HClO₄ buffer), applied potential -0.16 V (or at pH 3.0 (20 mM citrate buffer) and -0.25 V), I = 0.50 (NaClO₄), rotating rate 2000 rpm, and 25°C. We found that electrolyte gold-plating under acidic conditions gave the best results. A dc voltammogram of the gold-plated nickel RDE from 1.0 mM 1 (at pH 1.0 (HCl buffer), I = 0.50 (NaCl), and applied potential of -0.15 V for 15 min) indicated no oxidation wave of nickel near +0.1 V

FIGURE 5 Comparison of reduction potentials of Au^{ill} or Au^i to Au^o on an Au-RDE at 2000 rpm, pH 1.0 (HClO₄ buffer), and 25°C. ^apH 9.0.

(Figure 4d), implying that the nickel electrode is completely covered and protected with gold. At pH 7 (20 mM HEPES buffer) the application of -0.47 V to 1 precipitated only black gold particles on the nickel RDE.

The electrochemical reduction of the linear amine complexes, $[Au^{III}(dien)Cl]^{2+}$ 5 at +0.33 V and $[Au^{III}(en)_2]^{3+}$ at +0.13 V 6, failed to produce good gold-plating. The difference in the ease of Au^{III} reduction to Au^0 metal and/or Au^0 dissociation (from the chelates) rates for these complexes may be responsible for success or failure in gold plating (Figure 5): the more difficult (or slower) the dissociation from macrocyclic cyclam, the longer the gold depositing time (resulting in good plating), or the easier (or faster) the dissociation from ethylenediamine or diethylenetriamine, the faster the gold precipitation (resulting in no plating).

Our electrolytic gold-plating products look as good as currently most widely adopted ones from $[Au^{I}(CN)_{2}]^{-}$ (in the presence of excess CN^{-} at pH 4 ~ 9 and ca - 0.9 V).^{19,20} Note that the reduction potential of Au^I in the cyanide complex is much more negative (Figure 5). The significance of our Au^{III}-cyclam 1 is in the optimum acidic pH and the non-use of the pollutant CN^{-} . Moreover, in our simple gold-plating system, we can recycle the macrocyclic ligands and also start with a quantified Au^{III} source.

Au^{III}-Tetrafluorinated cyclam (6,6,13,13-tetrafluoro-1,4,8,11-tetraazacyclotetradecane) (7)

Treatment of NaAuCl₄·2H₂O with equimolar tetrafluorinated cyclam in CH₃CN for 1 h yielded $7 \cdot Cl \cdot (ClO_4)_2 \cdot H_2O$ as yellow needles, which were recrystallized from aqueous 1 M HClO₄ solution.

As was observed for Au^{III}-cyclam 1 ($pK_a = 5.4$), reversible deprotonation to 11 with pK_a value of 1.6 ± 0.1 (at 25°C, I = 0.10; HClO₄/NaClO₄ buffer) was measured by the emergence of the CT absorption band at 368 nm (ε 2120) with an increase in pH, which is a characteristic (N⁻) \rightarrow Au^{III} charge transfer (CT) absorption band.^{1,6} The NH dissociation constant of 7 to 11 is $\sim 10^4$ times lower than that of 1 ($pK_a = 5.4$) caused by the strong electron-withdrawing effect of F groups. Aqueous solution of 7 showed pH ~ 3 , which means a major species in aqueous solution of 7 is 11.

The pH-titration of 11 with 0.1 M NaOH showed removal of a proton with pK_a value of 6.49 \pm 0.03 (at 25°C and I = 0.10; NaClO₄), which is assigned to the second deprotonation, as depicted in 12. The deprotonated 12 showed λ_{max} 331 nm (ε 3790), reversibly. The dissociation of two NH protons from the cyclam complexes at neutral pH is the first case of its kind.

Au^{III} -Tetramethylcyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane((8)

Treatment of NaAuCl₄·2H₂O with equimolar tetramethylcyclam in CH₃CN/CH₃OH (5:1) for 2 h yielded $8 \cdot Cl \cdot (ClO_4)_2$ as yellow needles, which were recrystallized from aqueous 1 M HClO₄ solution.

The dc polarogram of 8 on a glassy carbon electrode in DMF (25° C, I = 0.10; Et₄NClO₄) shows three-step 3e-reduction waves at +0.17 (for Au^{III} \rightarrow Au^{II}), -0.09 (for Au^{II} \rightarrow Au^I), and -0.90 V (for Au^I \rightarrow Au⁰) vs SCE, each consisting of 1e⁻ reduction process (Figure 6a). The cyclic voltammogram of 8 for the 1st reduction wave showed an Au^{II}/Au^{III} (*i.e.* $8 \rightleftharpoons 13$) quasi-reversible reduction wave ($E_{1/2} = +0.18$ V vs SCE, $\Delta E = 90$ mV, Figure 6b). On the other hand, the cyclic and dc polarograms of Au^{III}-cyclam 1 showed only one-step 3e-reduction wave at -0.64 V under the same conditions, which is interpreted as the reduction of Au^{III} directly to Au⁰. Isolation of Au^{III}-complex 13 by electrochemical reduction of 8 at +0.10 V was unsuccessful due to the instability of 13.

FIGURE 6 Dc and cyclic voltammograms of 8 with a glassy carbon electrode in DMF at I = 0.10 M (Et₄NClO₄) and 25°C; (a) RDE at 2000 rpm, scan rate = 10 mV s⁻¹; (b) CV of scan rate = 500 mV s⁻¹.

Tetramethylcyclam is well-known to stabilize metal ions with unusually low oxidation states: e.g., Cu^{1,21} Ni^{1,22} or Pd^{1,23}

Au^{III}-Aminocyclam (6-Amino-1,4,8,11-tetraazacyclotetradecane) (9)

Treatment of NaAuCl₄·2H₂O with equimolar aminocyclam in refluxing CH₃CN for 1 h yielded $9 \cdot (ClO_4)_4$ as colourless needles, which were purified by Dowex 50X4 ion exchange column chromatography (eluant: 3 M HCl) and recrystallization from aqueous 1 M HClO₄ solution.

The pH-titration of 9 with 0.1 M NaOH showed removal of a proton with pK_a value of 3.4 ± 0.1 (at 25°C, I = 0.10; NaClO₄), which is assigned to the deprotonation from one of the secondary amines of aminocyclam to 14. The deprotonated 14 has a characteristic (N⁻) \rightarrow Au^{III} CT absorption band at λ_{max} 355 nm

(ɛ 1800), which reversibly diminished upon protonation to 9. The dissociation constant of a proton from the aminocyclam NH is 100 times smaller than that of Au^{III}-cyclam 1 ($pK_a = 5.4$), caused by the electron-withdrawing effect of the protonated NH⁺₃ group.

The second deprotonation occurs at the arm amino group with $pK_a 6.03 \pm 0.02$ for $14 \rightleftharpoons 15$. It is significant that the NH₃⁺ proton dissociates only after the cyclam-NH dissociates, despite the former normally being far more acidic than the latter. This is an unambiguous illustration of the strong Au^{III} (d^8) acidity extending only to the N_4 square-planar direction. The pK_a value of 6.0 for $14 \rightleftharpoons 15$ should be compared with that for the free ligand ($pK_a = 6.1$). Apparently, axial bonding of the NH₂ arm to Au^{III} (d^8) does not occur. For comparison, in the Ni(II) complex of the aminocyclam, the arm NH_3^+ , upon deprotonation (with pK_a 3.8), axially binds to Ni^{ff} (*i.e.*, $16 \rightleftharpoons 17$).¹⁰

SUPPLEMENTARY MATERIAL

Full lists of anisotropic temperature factors, bond distances and angles, and calculated and observed structure factors are available on request from the authors.

REFERENCES

- 1. E. Kimura, Y. Kurogi and T. Takahashi, Inorg. Chem., 22, 4117 (1991).
- 2. F.V. Lovecchio, E.S. Gore and D.H. Busch, J. Am. Chem. Soc., 96, 3109 (1974).
- 3. E.K. Barefield and M.T. Modella, J. Am. Chem. Soc., 97, 4238 (1975); E. Zeigerson, G. Ginzburg, N. Schwartz, Z. Lus and D. Meyerstein, J. Chem. Soc., Chem. Commun., 241 (1979).
- 4. M.O. Kestner and A.L. Allred, J. Am. Chem. Soc., 94, 7189 (1972).
- 5. E.K. Barefield and M.T. Mochella, Inorg. Chem., 12, 2829 (1973).
- W.H. Baddley, F. Basolo, H.B. Gray, C. Nölting and A. Pöe, Inorg. Chem., 2, 921 (1963); G. 6. Nardin, L. Randaccio, G. Annibale, G. Natile and B. Pitteri, J. Chem. Soc., Dalton Trans., 220 (1970).
- 7. B.P. Block and J.C. Bailar Jr., J. Am. Chem. Soc., 73, 4722 (1951). 8. M. Shionoya, E. Kimura and Y. Iitaka, J. Am. Chem. Soc., 112, 9237 (1990).
- 9. R. Buxtorf and T.A. Kaden, Helv. Chim. Acta, 57, 1035 (1974).
- 10. E. Kimura and T. Koike, paper in preparation.
- E. Kimura, T. Koike, K. Uenishi, M. Hediger, M. Kuramoto, S. Joko, Y. Arai, M. Kodama and 11. Y. Iitaka, Inorg. Chem., 26, 2975 (1987). V.J. Thöm, C.C. Fox, J.C.A. Toeyens and R.D. Hancock, J. Am. Chem. Soc., 106, 5947 (1984); G.
- 12. Bosnich, C.K. Poon and M.L. Tobe, Inorg. Chem., 4, 1102 (1965).
- M. Yamashita, H. Ito, K. Toriumi and T. Ito, Inorg. Chem., 22, 1566 (1983). 13.
- B. Bosnich, R. Mason, P.J. Pauling, G.B. Robertson and M.L. Tobe, J. Chem. Soc., Chem. Commun., 14. 97 (1965).
- 15. D. Waknine, M.J. Heeg, J.F. Endicott and L.A. Ochrymowycz, Inorg. Chem., 30, 3691 (1991).

- 16. J.-H. Kim and G.W. Everett Jr., Inorg. Chem., 20, 853 (1981).
- 17. E. Kimura, T. Koike, R. Machida, R. Nagai and M. Kodama, Inorg. Chem., 23, 4181 (1984).
- 18. H.O. Ali and I.R.A. Christie, Gold Bull., 17, 118 (1984).
- R.J. Puddephatt, In Comprehensive Coordination Chemistry, S.G. Wilkinson (ed.), Vol. 5, Pergamon Press, 1987, Ch. 55, p. 895.
- Y. Okinaka, In Gold Plating Technology, Electrochemical Publications, Ayr, Scotland, 1973, Ch. 11, p. 82; Y. Okinaka, R. Sard, C. Wolowodiuk, W.H. Craft, T.F. Retajczyk, J. Electrochem. Soc., 121, 56 (1974); Y. Okinaka, J. Electrochem. Soc., 120, 739 (1973).
- 21. N. Jubran, H. Cohen, Y. Koresh and D. Meyerstein, J. Chem. Soc., Chem. Commun., 1683 (1984).
- 22. N. Jubran, G. Ginzburg, H. Cohen, Y. Koresh and D. Meyerstein, Inorg. Chem., 24, 251 (1985).
- 23. A.J. Blake, R.O. Gould, T.I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1730 (1987).